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Nikolai [l 1, in the year 1939, investigated an inertially balanced 
symmetrical gyroscope on gimbals, taking into account masses of the 
gimbal rings. He discovered the interesting fact, that the stability of 
the gyroscope axis in vertical position depends on both the magnitude 
and direction of the angular velocity vector of the outer ring. 

Magnus [Z I proved the occurrenceof a similar phenomenon for an un- 
balanced symmetrical gyroscope on gimbals. He constructed the Liapunov 
function using the Chetaev method and obtained sufficient conditions for 
the stability of rotation of a gyroscope about the vertical axis of the 
outer gimbal ring. 

Skimel* investigated the stability of a regular precession of a gyro- 
scope on gimbals when the nutation angle 8 f 9. 

In this paper the author constructs the Liapunov function in the form 
of a linear combination of the first integrals of the equations of motion 
and derives from it the sufficient conditions for the stability of motion 
of the regular precession of a gyroscope on gimbals, which yields as a 
special case (when 8, = 91 the necessary condition for stability of the 
vertical Position of the gyroscope axis. The author investigates also 
the influence of the dissipative forces on the stability of motion of a 
gyroscope. 

1. Let us consider the motion of a symmetrical gyroscope on gimbals, 

* V. N. Skimel, Nekotorye zadachi dvizhenia i ustoichivosti tiazhelogo 
giroskopa. Avtoreferat kandidatskoi dissertatsi, (Certain problems 
of motion and stability of a heavy gyroscope. Dissertation for 
candidate’s degree), Kazan. 1955. 
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taking into account the masses of the gimbal rings. The stationary axis 
of rotation of the outer gimbal ring is vertical, the axis of rotation 
of the inner ring is horizontal and the centers of gravity of the gyro- 
scope and of the inner ring are on the axis of symmetry of the gyroscope. 

We shall introduce two right-handed orthogonal coordinate systems, a 
fixed one Oh[, and a moving one Oxyt. whose origins coincide with the 
stationary point 0 in the gyroscope system. The axis 04 of the fixed 
coordinate system is vertical and coincides with the axis of rotation of 
the outer ring; the axes 05 and 0~ are in a horizontal plane. The co- 
ordinate system OXYZ moves with the inner gimbal ring, the OX and OZ axes 
coincide with the axis of rotation of the inner ring and with the axis of 
symmetry of the gyroscope, respectively. and the Oy axis is perpendicular 
to the middle plane of the inner ring. 

The orientation of the whole gyroscope system in the space O[lc can 
be represented by the three Eulerian angles; the angle of nutation 6, the 
angle of precession $ and the angle (p which is the angle of rotation of 
the gyroscope itself with respect to the coordinate system Oxy~. The 
projections of the instantaneous angular velocity of the gyroscope, o, 
and of the inner ring, wl, on the coordinate axes OX, Oy, OZ. are expresse 
in terms of the Eulerian angles and their time derivatives as follows: 

p = w, q = +’ sin 0, r = Q’ + 4’ 620s 0 

PI = 8“ q1 = 4’ sin 8, rl = +‘cos6 
fl- $1 

The vector of the instantaneous angular velocity y of the outer ring 
is directed along the 05 axis; its projection on the 05 axis (its 
scalar component) equals sl/“. Let us assume further that the axes X, y, z 
are the principal axes of inertia of the gyroscope and of the inner ring. 

Let A = 3, C. be the principal moments of the inertia of the gyroscope. 

Let AI, Bi, Cl be the principal moments of inertia of the inner gimbal 
ring, and let the moment of inertia of the outer ring with respect to 06 
axis be A*. 

The kinetic energy of the gyroscope T, and the kinetic energies of the 
inner and outer rings T1 and T2 could be expressed as follows: 

II’ = $ [A (P + JI’a sin2 0) + C (9, + 9 cos 0)$] 

T1 = $ [AIWa + Bl+‘a sin2 6 + C1J1’2 co&] (1.2) 

Let the coordinates of the center of gravity of the gyroscope and of 
the inner ring be (0, 0, z,), and let the weight of the gyroscope and of 
the inner ring be P. It Is easily seen that the force function is 
u= - PEO cos 8; and for a balanced gyroscope zo = 0. 
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Let us initially consider the case when the frictional forces on the 
gimbal axes are absent. In this case we have only gravitational forces 
acting on the system, its equations of motion could be expressed as the 
Lagrange equations, and in our case the Lagrangian is L = T + T1+ T2+ V. 

The equations of motion are as follows: 

(A + 4) e” -((A+B,--CJJI’~sin0cos0+C(cp’+~‘cos8)~’sin0-P2~sine=O 

-$ It-4 + Bl) 4’ sin* 8 + c (fp* + +’ cos e) ~09 8 + cl p ~09 e + A,+‘J = 0 (1.3) 

d 
c dt (ql’ + $’ co9 0) = 0 

The first integrals of the equations of motion are immediately obtained 

as (i-4) 

(.4 + B,) $0 sina 8 + c (9’ + qi* cos e) ~08 e + clq COST 8 + A,+’ = k, ‘p’ + $0 c~s 8 = rO 

These two integrals were taken with respect to the cyclic coordinates $b 
and 9 respectively. If we multiply the three equations (1.3) by 8’i <i 
$’ respectively and add them, we obtain one more integral, the energy 

integral 

(A + A,) 8’2 + (A + B,) I+‘” sin2 8 + cl+‘2 ~03 e + c (9’ + JI’ cos ey + 
+ Aa(f2 + ZPz, cos 0 = h (1.5) 

The existence of this integral is certain because the applied force has 
a potential and because the constraints are independent of time. 

He shall mention that the equations of motion (1.3) could be obtained 
in a different way. As it is customary in the theory of gyroscope [l I 
we may utilize the theorem of angular momentum and the following sets of 
equations; the moments of the whole system with respect to the 04 axis, 
the moments of the gyroscope and of the inner ring with respect to the 
OX axis, and the moments of the gyroscope with respect to the OZ axis. 

2. The four expressions 

e = e,, 8’ = 0, $0 =;; R, r=W (2-i) 

are particular solutions of the equations of motion (1.3) when the 
constants 8,, a. o satisfy the relation 

[(A + B1 - Cl) Ra cos 6, - Cd2 + Pz,] sin e. = 0 (2.2) 
When 8, # 0.~. the motion described by the particular solution (2.1) 

represents the regular precession of a gyroscope. We regard this motion 
as unperturbed and we shall investigate its stability with respect to 
the variables 8, 8’, $’ and r. 

For the perturbed motion we shall substitute the following expressions: 

e=fd+q, , 8’ = 7j = e,, v = fi -6 52, r=a+Ca (2.3) 

in the equations (1.3). 
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Equations of the perturbed motion obtained from this substitution admit 
the followfng first integrals fincludlng only first and second order 
terms] : 

The rows of dots indicate the omitted terms of higher order. 

We shall now construct the Liapunov function in the form of the linear 

combination af the integrals (2.4): 

(2.51 

---I@ -i-B1 - C,) (cos* B. - sin* 0,) a* - C&G cos 0, +- Pzo cos f&j qa + 2CR sin g&2 + . . . 

The function Vlt,, 6,. C3, p 1 i S a positive-definite function of its 

arguments when the following single condition is satisfied: 

(A+& - C,) (co@ go - sin2 8,) Q2 - CoQ cos B0 + Pz0 cos e0 < 0 t2.6) 

According to the Liapunov stability theorem this condition is a sufficient 

condition for the stability of the regular precession (2.1) of the gyro- 

scope on gimbals. When sin 8, f 6, 0 # 0, then using the equation (2.21, 
we can express the above condition in the form 

A+4--C1>0 (2.7) 

When the condition (2.7) is satisfied, the regular precession of a 
gyroscope on gimbafs is stable wltb respect to the variables 8, 8'. $*. 

and t; hence it must be stable with respect to the variables 8. p, q, and 
I^. The obtained result is obviously valid for .q, f 0 as well as for 
I* = 0. 

We shall investigate further the case 8, = 0, when the unperturbed 
l otfon consists of a uniform rotation of the outer ring about the vertical 
axis with angular velocity Q, and a uniform rotation of the gYroscope 

with angular velocity 0. In this case the condition (2.2) is satisfied 

for arbitrary values of Q and o. A sufficient condition for stability of 

such a motion follows from (2.6) and ls t 2 1 
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It is obvious that if the above inequality is satisfied, then simul- 
taneously the conditions 

C~o*-4(A+Br-cCr)Pz~>o, fi, <n<fi2 (2.9) 

must also be satisfied. Here 4, and $, are roots of the polynomi81 

(A+B1-cCr)Slle-ccwa+Pz*=O 

When B1 = C1 = 0, then the first inequality (2.9) reduces to the con- 
dition of Uaievski [3 1. The Maievski condition is the necessary and 
sufficient condition for the stability of the Lagrange gyroscope. The 
second inequality in (2.9) would remain as it is. 

We shall prove now that the condition (2.8) is also a necessary condi- 
tion for the stability of rotation about the vertical axis of a gyroscope 
on gimbals. 

Consider the function: 
V=(A_tA1)rl_rl’ (2.10) 

and its time derivative taking into account the perturbed motion, 

v’=(A+A*)~‘2+[(A+131-cC1)n2-cCo+Pz~]~2+... 

The function Y’ would be positive-definite if the following condition 
is satisfied: 

(A++-l)fP -CcoQ_tPZo>O 

The function V admits an infinitely small upper bound and could assume 
positive values. On the strength of the Liapunov theorem the motion of a 
gyroscope would be unstable with respect to the variables W, and q’ under 
such a condition. 

It follows that the condition (2.8) must be necessary and sufficient 
for the stability of rotation about the vertical axis of a gyroscope on 
gimbals. 

Without any loss of generality we can take w > 0. When tu > 0 the 
quantities 4, and f22 are positive when A + B1 - Cl > 0, which we shall 
assume to be the case. When 0 < ai, and in the special cases when fl= 0, 
or when In > %, the motion of a gyroscope about the vertical axis would 
be unstable in spite of the fact that the first condition in (2.9) is 
satisfied. When ZQ < 0, the first condition in (2.9) is satisfied for 
any angular velocity w, and in this case 4 < 0 and f$ > 0. When the 
angular velocity of precession !J, satisfies one of the inequalities 
sZ<nl ora>%, the motion is unstable. 

For a balanced gyroscope (z, = 0) the necessary and sufficient condi- 
tion (2.81 for the stability of rotation about the vertical axis assumes 
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the following form [ 1 ] 

d<fi< co 
A+&---1 

(2.11) 

It should be mentioned that the problem of stability of a gyroscope 

on gimbals could be analyzed also by the application of the Routh theorea 
Solving the cyclic integrals (1.4) for $’ and 4’ we obtain 

and we construct the Routh function 

R = L - Crop’ - k+’ = + (A + A,) W2 + W (0) 

where the new force function is 

1 
w(e) = --(pzo ‘OS e + 5 

(k - Cro cos 0)2 1 
(A + B,) sin2 0 + cl ,709~ 8 + A, f y C’O*) (2.12) 

The function R is independent of the time t. hence the first integral 
of the Routh equation corresponds to the integral of kinetic energies: 

The first integral of the perturbed equation is 

$- (A + AlI P - w (e, + ?) + w (e,) = cowi 

with the condition that the constants r. and k remain unperturbed. On the 
strength of the Routh theorem the motion is stable with respect to 8 and 
8’ when for the unperturbed motion the new force function I has a maximum 
For example, it could be easily shown when 8, = 0, that the condition for 
a maximum of the function IV has the form of the inequality (2.8). 

3. Reside gravitational forces we shall admit now frictional forces 
acting on a gyroscope on gimbals. With frictional forces present, the 
equations of motion will differ from the equations (1.3) in that their 
right-hand members will have the corresponding moments of the resistance 
forces. These equations would admit the following particular solution 

e = 0, 8’ = 0, ql’ = n, ‘p’ = WI (w~=o-cz) (3.1) 

only on the condition that the moments of the supplementary forces about 
the axes 06 and Oz are applied to the system in order to equilibrate 
the moments due to frictional forces. Let us investigate the stability 
of the motion described by (3.1) by setting in the perturbed motion 

e=q, 8’ = 7j’ = 61, +’ = Q + 52, P'=ol+ 1. 

Let us assume besides that in the perturbed motion the dissipative 
forces acting on a gyroscope on gimbals are time derivatives of the 
Rayleigh function 
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which is a positive-definite quadratic form of (5,, (2, 6. 

The variational equations for the perturbed motion are as follows: 

(A + -41) 51’ - [(Ai-B1-W@-- CC&? •j- %I] ? = - f&+ gE2 + m 

(4 + C + Cl) h.’ + Cc’ = - Ml + bEi3 + 4 (3.21 

C cc’ + s.2’) = - (fb + eS2 + 4 

Let us consider the function 

2W=(A+Al)E1~+(A~+C+Clff2~-f(~+~l-~lf~~-~~~+~~,lrl’+ 
+CP+2fxar+2~ (A + Adr141 (3.3) 

where E is a certain positive constant. On the strength of (3.2) the time 
derivative of the above function equals 

W’ = - {IQ -- e (A + -W]U + %? + cr” + W&X + 2fM + 2&&z - 
-e[(AfBr-CGlfW- CC& + Pzol na + E? Ml + &a + fW (3.4 

It is obvious that in order to make the function R positive-definite 
and its time derivatives II’ negative-definite with respect to the vari- 

ables tl, 52, c. ‘I, under the somewhat stronger condition (2.8) (in the 
right member of (2.8) zero is replaced by 6(c) < 0) we must select a 
sufficiently small constant 6. If we do this, then the function W would 
satisfy the conditions of the Liapunov theorem on the asymptotic stablity. 
The stable motion (3.1) becomes asymptotically stable under the action 
of dissipative forces. The above statement is valid also in the case when 
the masses of the gimbal rings are neglected, that is when 

Lord Kelvin proposed [3 I to call the stability of equilibrium arising 
from a gyroscopic stabilization “the temporary stability”, and the 
stability resulting from the conservative forces “the secular stability”. 
Extending the last definition to the case of a steady motion we conclude 
that the motion (3.1) of a gyroscope on gimbals under the action of 
gravitational forces and the constant moments of the supplementary forces 
is stable in the secular sense. This circumstance is closely connected 
with the fact that for the motion (3.1) the new force function (2.12) has 
a maximum. 
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